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The hydrodynamic interaction of two spheres moving in 
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The forces on two spherical particles moving in a fluid are investigated by the method 
of matched asymptotic expansions in the small Reynolds number, for the case when 
the particles are within each other’s inner region of expansion. The particular case 
in which the distance 1 between the sphere centres is very much larger than the sphere 
radii a and b is studied in detail. The asymptotic expansion of the force on one of 
the spheres for small all and bll  is obtained. Some properties of the force, not to  be 
expected from the Stokes equation, are revealed. 

1. Introduction 
Hydrodynamic interactions between particles have significant effects on the bulk 

properties of a fluid-particle system such as a suspension or a flow through a porous 
medium. They have been the subject of many studies for many years (for references 
see Happel & Brenner 1973; Batchelor & Green i972). If particles are randomly 
located within a fluid, the most important hydrodynamic interactions are those 
between a pair of particles. So far most studies of the pair interaction have been 
based on the Stokes equation. However, they cannot fully explain interesting 
properties of the interaction. For example, in the case when two spheres of equal size 
are sedimenting vertically one above the other in an unbounded fluid, the difference 
between the forces on the leading and trailing spheres cannot be explained by an 
analysis based on the Stokes equation. 

In  order to investigate such properties, we must take into account the inertial effect. 
Let us consider two particles moving in an unbounded fluid a t  small but finite 
Reynolds number R. To treat the nonlinear inertial term in the Navier-Stokes 
equation properly, we have to use the method of matched asymptotic expansions. 
Then there can be at least the following two cases: case I, where the particles are 
sufficiently separated so that each of them is located in the outer region of expansion 
of the other; and case 11, where they are sufficiently close to each other so that each 
of them is located in the inner region of expansion of the other. Case I was studied 
by Vassure & Cox (1977). 

It is intuitively evident that  the particles experience stronger interaction with a 
smaller separation between them. Hence the study of case I1 is expected to be 
crucial for understanding the effect of the particleparticle interaction on the 
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hydrodynamical bulk properties of a particulate system with non-zero particle 
Reynolds number. The purpose of this paper is to study this case, i.e. case 11. 

Brenner & Cox (1963) presented a method of calculating the first order (in R) 
force on a particle of arbitrary shape in a uniform flow. Their argument can be 
applied to obtain the total force on two particles (in case 11) but is insufficient to 
obtain the individual force on each of them. Their method is generalized in 333-5 so 
that the individual forces can be calculated; for simplicity the particles are assumed 
to be spheres. (The discussion of 333-5 can be easily extended to the case where the 
particles are of arbitrary shapes.) In  $56 and 7,  confining ourselves to the case 
where the distance 1 between the spheres is very much larger than their radii a and 6 ,  
we analyse the force on one of them. The asymptotic expansion of the force is given 
up to O ( a / l )  or O(b/Z). 

For full understanding of the R-dependence of the bulk property of a fluid- 
particle system, it would be necessary to study more general cases including the 
case with all  and/or b / l  being order unity. The approach in 333-5 is applicable to 
such cases also. Such analyses are left to future studies. 

2. Basic equations 
We consider two spherical particles of radii a and b (which will be referred to 

respectively as sphere A and sphere B)  moving in a quiescent unbounded incom- 
pressible fluid. The instantaneous translational and angular velocities of sphere A 
(sphere B )  are denoted by Ua and 0; (Uk and Rk) respectively. We choose a 
Cartesian coordinate system ( r l ,  r2 ,  r 3 ) ,  the origin of which is a t  the instantaneous 
position of the centre of sphere A ,  and relative to which the fluid velocity a t  infinity 
is -Ua. I n  this coordinate system the flow may be regarded as a steady one, provided 
that the motions of the spheres are steady and I U; - U; 1 is sufficiently small. 

The fluid velocity u’ and pressure p’ (taken to  be zero a t  infinity) then satisfy the 
steady Navier-Stokes and continuity equations 

pV’2u‘ - V’p’ = pu’ . V’U’, 

V’ . u’ = 0,  
(2 . la )  

(2.1 b)  

and the boundary condition at infinity 

u’+-U> as l r ’ l + m ,  (2.2) 

where p and p are respectively the fluid density and viscosity. The velocity u’ is 
assumed to  satisfy the no-slip boundary conditions on the surfaces of the spheres : 

u’ = RA‘ x r’ on lr’l = a ,  (2.3a) 

u’ = (Ug-Ua)+nB’x (r’-1’) on lr’-l’] = b ,  (2.3b) 

where 1‘ is the position vector of the centre of sphere B. 
I n  terms of dimensionless quantities defined by 

I 
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(2.1)-(2.3) may be written as 

V'u-Vp = Ru.VU, (2.5~) 

v . u  = 0, (2.5b) 

u = W x r  on r = 1 ,  (2.7~) 

u = A U + W x q  on q(=  Iql) = A, (2.7b) 

where q = r - 1. 
Here we assume that R 4 1 and the non-dimensional distance 1 (= 11 I) between 

the sphere centres is much smaller than a/R so that sphere B is located in the inner 
region of expansion of sphere A (case 11). On the other hand, in case I studied by 
Vassure & Cox (1977), the distance 1 is assumed to be much greater than alR. 

u + U  as r = l r I + a o ,  (2.6) 

3. The inner and outer expansions 
The inner expansions of u and p are of the form (Brenner & Cox 1963) 

u = u,(r)+R ul(r)+o(R), (3.1~) 

P = po(r)+Rp,(r)+o(R). (3.1 b) 

Substituting these into (2.5)-(2.7), and equating powers of R yields 

v2u, - Vp, = 0, (3.2~) 

v.u,  = 0, (3.2b) 

u 0 = W x r  on r = 1 ,  (3.3~) 

u , = A U + W x q  on q = A ,  (3.3b) 

(3.4a) V2U1- vp, = u, . vu,, and 

v . u ,  = 0, 

u,=O on r =  1 and q = h .  

(3.4b) 

(3.5) 

The outer expansions are of the form 

u = U+RiI,(P)+o(R), (3.6~) 

p = B2@l(F) +O(R2), (3.63) 

where P = Rr. Substituting these into (2.5) and (2.6), one finds 

V.fi,--Vp, = u.V i i , ,  (3.7~) 
6.0, = 0, (3.7b) 

i i , - + O  as r"-,co. (3.8) 

The force f'" and torque t'" on sphere u (u is A or B)  are expanded as 

f " 
6nap U> 

f" = = fc+Rf,"+o(R), (3.9a) 

(3.9b) 

where f; and fp (tg and t;) are the non-dimensional forces (torques) due to (&,p,)  
and (ul,p,) respectively. 
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4. Zeroth-order inner approximation (u,, p , )  and the matching 
condition for (ul, p , )  

Equation ( 3 . 6 ~ )  yields the matching condition 

u o + U  as r -+co,  (4.1) 

and (uo ,p0 )  can be obtained by solving (3.2) with (3.3), (4.1). Because of the linearity 
of the equations (3.2) and the boundary conditions (3.3) and (4.1), the zeroth-order 
force f; (CT is A or B )  due to (uo ,po )  depends linearly on U ,  CtA and nB, where AU 
is assumed to be negligible. From this and the symmetry consideration, it is shown 
that f; is of the form 

f; = aTU+a; (U . 1)1+/3"CtA x 1 + y 'W x 1, (4.2) 

where a;, a;, p" and y" are scalar functions of I and h only 
It is known that u, and p ,  are expanded for large r as 

u, = U-S(r).f,+O(r-2), (4.3a) 

3 
2r2 

p ,  = --P.f,+O(r-3), 

where f, = ff + ff, f = r/r, and S is a tensor defined by 

31 
4 r  

Sij(r) = 

(4.3 b )  

(4.4) 

The first-order outer approximation (iIl,j5,) satisfying (3.7), (3.8) and properly 
matching with (4.3) is known to yield the matching condition 

p 1  = o(r-l)  as r +  co 

(see Brenner & Cox 1963). 

(4.5b) 

5. First-order force and torque 

is convenient to introduce a Stokes field (u* ,p* )  defined by 
To calculate the first-order force fe  and torque tf on sphere A due to ( u , , p l ) ,  it 

V'+*-V * - P - 0 ,  

u* = V*+ W* x r 
u* = 0 

u*+O as 

Equations ( 3 . 4 ~ )  and ( 5 . 1 ~ )  may be written 

v . u *  = 0, 
r + m ,  

on r =  1 ,  
on q = h .  

as 

(5.1 a ,  b )  

(5.2a) 

( 5 . 2 b )  
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where (e*) i j  = H ( u * ) ~ , ~ +  (u * )~ ,< }  is the dimensionless rate-of-strain tensor for the flow 
u*. Now we integrate this over the volume V, bounded externally by the spherical 
surface S, of radius L,  and internally by the surfaces SA(r = 1 )  and S,(q = A ) .  Then 
using the boundary conditions (3.5), (5.2b), and letting L + 00, we obtain 

6n(( V * ) i ( f f ) i +  (W*) i ( t f ) i )  = { ( u * ) ~  (7l)ijdSj = 11-12-13+1? (5.6) 
S A  

where 
n 

1, = lim J ( u * ) ~  (71)ijdSj, 
L+m S L  

r 

I = lim ( u ~ ) ~  ( u ~ ) ~  ( e * ) i j  d V ,  
L-tm S,, (5.10) 

and dS has the direction of the outer normal to the volume bounded by the surface 
X, or S,. It is shown in a manner following Brenner & Cox (1963) that  

I ,  = 0, ( 5 . 1 1 ~ )  

where 

(5.11b) 

(5 .11~)  

( 5 . 1 2 ~ )  

(5.12b) 

(5.12 c) 

6. Evaluation of I when all' 4 1 and W* = 0 

When e = 111 < 1 ,  applying the method of reflection, we obtain 

u,= U-D(r).hA+T(r).W-D (6- 1) 

where AU in (3.3 b) is assumed to be negligible, the matrices D and T are defined by 

Dij (r )  = &(r) +QV2Sij(r) ,  (6.2) 

(6.3) 
+k W) = e i j k p '  

and hA = U-S(:) .u, ( 6 . 4 ~ )  

hB = U-X(1) .U .  (6.4b) 
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Similarly, we obtain 

u* = D(r).V*+T(r).W*-D - .S(l) .V*+O(e2).  (6.5) (3 
To obtain the force (f?)$ we put ( V*),  = and W* = 0 in (5.6). Then, substituting 

(6.1) and (6.5) into (5.6) and taking into account the relations S i j ( - r )  = Sij(r), 
qj( - r )  = - q j ( r ) ,  we obtain 

where 

1, = lim 1 [Uj-Djp(r)h$-Djp(;)hg]  
L+W L > r > 1  

I B = -  L-rm lim L > q > A  [ U j - D j p @ h g - D j P ( l ) h $  1 

in which 

3 
q k ( r )  = 8 s j i , k ( r ) + X k i , j ( r ) }  = T2@t(Jjk-3@j Bk) 

and f = r / l ,  g = g/Z. It is shown in the appendix that 

I ,  = m(hA x nA)$ + O(E’),  

I B  = -nhZ[S(l) . (U x @ ) I i  + O ( E 2 ) .  

Now let us take the coordinate system in which 

1 = Ze,, U = (cosB)e,+(sinO)e,, 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

where cose = U . I ,  and e, is the unit vector in the direction of the ith Cartesian 
component. Then Jgk with m 4 3 a n d j  or k = 3 ,  and JtSk do not appear in (6.6). Some 
of the other Js are easily shown to be zero. To calculate the remaining Js, i t  is 
convenient to use a formula for a bipolar integral : 
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where the indicates that the integration is restricted to the part of the (p, r)-plane 
in which k , p ,  r can be the sides of a triangle. The formula (6.17) is known to be useful 
also in the study of turbulence (Leslie 1973). The calculation was carried out with 
the algebraic manipulation language REDUCE-2 (Hern 1973) in the Computer Centre 
of the University of Tokyo. The following rational numbers in (6.18) are obtained 
by such a computation manipulated algebraically, and not by a deduction from 
decimal numbers. The results are as follows: 

4 1 1  = -83 4 2 2  = B, J i 2 1 + 4 1 2  = -83, 

32, J:22 = &, Jt21+ Ji12 = -22_ 

GI1 = --% G22 = E? 4 2 1 + 4 1 2  = -8, 
J’411 = -22 

(6.18) ._I Jt23 = #, JtZl = -a. 
The other Js are zero or do not appear in (6.6). The above value for each J was checked 
to be in good agreement with (within a difference less than from) the result of 
numerical integration obtained by using a library program AQ2DD in the 
Computer Centre of Nagoya University. 

7. The force on sphere A 
For V;t; = Spi and W* = 0, we have 

f*A = -ei+O(E2), (7.1) 
g =  AS(^) . e,+0(€3). (7.2) 

From (5.6), (5.11), (6.6), (7.1) and (7.2), the first-order force f;l is given by 

6n(ff), = in{(3f0-(U.f0)U).  (ez-hS(l).e,)}+n{hA xnA 
-A2S(1). (U x SZB)},-4nhUp Uq<pq+2ne{Up Uq(2AJfpq 
+ h 2 e p q )  +2h2UpQf Jtpk}+O(e2), 

where p and p take only the values 1 and 2. 
The following observations can be made from this result. 
(i) If U is perpendicular to l(0 = in) or U = (0, 1,0), the force (f’A)l on sphere A 

(f’A)l = 6npaU2{R[-&A+)a;l +s(&A+&A2 

and parallel to 1 is 

- -$IQf+$12Qf)+O(s2 ) ]+o(R) } .  (7.4) 

When R = 0, the force f‘ given by (7.4) is clearly zero. If the rotational velocities of 
the spheres are very small, (f ’A)1 is negative, so that two spheres experience repulsive 
forces. 

It is to be noted that the rotation of sphere B affects ( f ’ A ) I  in (7.4), as well as that 
of sphere A .  In  the limit h -+ 0, (7.4) reduces to 

in accordance with the result for a single rotating sphere obtained by Rubinow & 
Keller (1961). 

It is also observed that the leading term in (7.4) has no dependence on 1. In case 
I, i.e. when 1 %  a /R ,  according to Vassure & Cox (1977), 

(f’A)l = napUQf(R+o(R) )  (7.5) 

for a = b ( A  = 1 )  and nA = nB = 0. 
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In  the limit R/s  --t 0 this yields 

( f A ) l  = 6npaU; (-& R ) ,  (7.7) 
which is in agreement with (7 .4)  for aA = 0 and a / l d  0. 

first-order force 
(ii) If U is parallel to l(8 = 0 or n), then (f,,), = ((1 +h)-3sA) Ul+O(e2), and the 

( f l A ) ,  = 6npaU;R(i( 1 + h- 3sh) (1 -id) U ,  +#A + s( -&A -&A2) + O(s2)}, (7.8) 

This force (up to O(e)) is not affected by the rotations of spheres. If sphere A is in 
the leading position, i.e. 0 = 0 or U = ( 1 , 0 ,  0), then 

on sphere A and parallel to U is 

= 6 n , ~ a U ; { ( f t ) ~  + R [$+#A - e(:h +!A2)  + 0(e2)]  +o(R)} ,  (7.9) 
while if it is in the trailing position, i.e. 6 = n, or U = ( -  1 ,  0, 0 ) ,  then 

( f A ) l  = 67~paU>{( f# )~+R [ - ~ + s ( ~ h ) + 0 ( c 2 ) ] + o ( R ) ) ,  (7.10) 

where ( f  t)l is the force obtained by the analysis based on the Stokes equations. Thus 
the drag on a sphere is larger when it is in the leading position than when it is in 
the trailing position. The difference Af between the drag in these two cases is 

Af(h)  = 6npaUL(R [$h-+(A +A2)  + O(e2) ]  +o(R)} ,  (7.11) 

From the above result it can be shown that if the two spheres are of the same radius 
a then the leading sphere experiences larger drag than the trailing one and the 
difference between the drags is Af( l ) ,  i.e. they effectively experience an attractive 
force of magnitude Af( l ) .  

In case I (ZRla < l) ,  for a = b 

Af = -6npaU; {; -- [ 1 - eup( -91 - f.} + . . . . 
Af + 6npaU>qR as R / e  -f 0, 

which is in accordance with (7.11) for e -+ 0. 

Appendix. Derivation of (6.15) 
First consider I,, which may be written as 

I” = I A ~ - I A ~ + O ( E ~ ) ,  

where 

(7.12) 
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Substituting (A 5) into (A 2), (A 3) ,  and noting that, ekqm P, 8,  = 0, we have 

where the relation ~!?,.~(l) = 2Jri(1) has been used. 
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